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comple teness  of  data.  To achieve  h igh  cont ras t  in 
e lec t ron-dens i ty  maps ,  for  ins tance  in s tudies o f  
sma l l - ampl i tude  c o n f o r m a t i o n a l  changes ,  e i ther  
a d d i t i o n a l  s t ructural  i n f o r m a t i o n  must  be ava i lab le  
or  modi f i ed  da ta  co l lec t ion  strategies must  be fol- 
lowed  which  involve Laue  exposures  at even more  
crystal  o r ien ta t ions  or a c o m b i n a t i o n  of  Laue and  
m o n o c h r o m a t i c  crystal  ro t a t ion  techniques .  
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Abstract 

A m e t h o d  is p re sen ted  to ca lcula te  the e lec t ros ta t ic  
po ten t ia l ,  the  electric field and  the electric-field 
g rad ien t  in  a crystal  f rom the a tomic  mul t ipo le  
expans ion  o f  the expe r imen ta l  charge  densi ty ,  as 

descr ibed  by the H a n s e n - C o p p e n s  fo rma l i sm 
[ H a n s e n  & C o p p e n s  (1978), A c t a  Cryst. A34, 909-  
921]. The  e lect ros ta t ic  p roper t ies  are expressed  in 
terms of  the  pos i t ions  and  the  charge-dens i ty  pa ram-  
eters o f  the  ind iv idua l  a toms.  C o n t r i b u t i o n s  due  to 
the procrys ta l  charge  dens i ty  and  the d e f o r m a t i o n  
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charge density are compared. The method is illus- 
trated by the calculation of the electrostatic potential 
maps of fully deuterated benzene and of iron(II) 
tetraphenylporphyrin. 

Introduction 

The accessibility of charge densities from experi- 
mental measurements has drawn attention to the 
physical properties that can be derived from the 
charge density. Foremost among these are the elec- 
trostatic properties. The electrostatic potential ~, the 
electric field E and the electric-field-gradient elements 
V E,,, at position Rp in a crystal are given by 

• (R.) = I [o,(r)/IRp -rl] (1) 

E(Rp) = I [(Rp - r )p , ( r ) / IRp-  r133 dr (2) 

V E=. (Rv) = - I {[3x,.x. - a~.lRp - rl2]/IRp - r l  s} 

xp,(r)  dr (3) 

where p , ( r )= p , ( r ) -pc ( r )  is the total charge density, 
the subscripts n and e denoting the nuclear and 
electronic densities, respectively. Xk is the kth com- 
ponent of R v - r in a Cartesian coordinate system and 
6 is the Kronecker delta. 

The formalisms for the mapping of the electrostatic 
properties of the crystal directly from the experi- 
mental structure factors have been published 
(Bertaut, 1978; Stewart, 1979; Schwarzenbach & 
Thong, 1979). In general, the reciprocal-space 
summation is affected by series termination. This is 
true in particular for the electric field and the electric- 
field gradient, but less so for the electrostatic potential 
for which the Fourier coefficients are equal to 
F(H)/IHIL 

Alternatively, the electrostatic properties due to 
individual atomic or molecular densities may be 
calculated in direct space from the charge density as 
described by the multipole expansion, the coefficients 
of which can be obtained from the X-ray structure 
factors by least-squares methods (Stewart, 1976; 
Hirshfeld, 1977; Hansen & Coppens, 1978). 

Formalisms for the direct-space evaluation of the 
electrostatic potential based on the Laplace 
expansion of [Rp - rl -~ have been reported by Bentley 
(1981), and for diatomic molecules only by Fink & 
Bonham (1981). The Fourier convolution-theorem 
method has been used for the calculation of the 
electric-field gradient (EFG) at the atomic nuclei by 
Epstein & Swanton (1982). In the present paper, 
Epstein & Swanton's method is generalized to include 
the derivation of the electrostatic potential and the 
electric field as well as the electric-field gradient at 
any position in space. We note that several results 
for similar calculations have been published (e.g. 
Spackman & Stewart, 1981; Swaminathan & Craven, 
1984; He, Swaminathan, Craven & McMullan, 1988; 

Destro, Bianchi & Morosi, 1989; Stewart, 1991). 
However, except in the case of the Epstein-Swanton 
expressions, we have not been able to compare the 
formalisms presented here with those used earlier as 
no record is available in the literature. A computer 
program for the calculation of electrostatic properties, 
MOLPROP (Su, 1991), is available for distribution. 

Calculation of the electrostatic properties from the 
pseudoatom densities 

In the following, we shall derive the relations corres- 
ponding to the Hansen-Coppens charge-density 
expansion formalism (Hansen & Coppens, 1978), in 
which the aspherical electron density of an atom is 
described by 

pc(r) = Pcp<(r)+ PvK '3pv(K' r) 
imax I 

x ~ K"3R,(K"r) 2 E P,,,,pd,,,w(O, ~o) (4) 
I=0  m = 0  p 

where pc(r) and p~(r) are core- and valence-electron 
densities constructed from the canonical Hartree- 
Fock atomic orbitals, Rt(r) is a normalized Slater-type 
radial function (STF), 

Rt(r)=[;~("'+3)/(nl+2)!]r"' e -:~, (5) 

Pc, P~ and P~mp are the population coefficients, p can 
be + or - for nonzero L d~,,p(O, ~o) are real spherical 
harmonic functions satisfying the normalization con- 
dition 

2 r r r r  

IId,m~(O,~)lsin(O)dOd~=2-ao,, (6) 
0 0 

which in (4) are referred to local symmetry-adapted 
Cartesian coordinate systems. The electron densities 
pc and p~, normalized to one electron, can be written 
in the form 

Ncp(r)=-4~= IVj,~=,k~= C,,~CM 
(2hi .+3 I / 2  

X L (2nj.,+2)!(2,j.kT-~7 J 

x r %  .'+',.k) exp [ -  (~,, + ~.k)r] (7) 

(1- '1 (2hi +3) ( '~  ,,- ~ (2nj k+3)-]  1/2 
~ bj, i l "' k'/ 'bj, k ] " [ 

xr(",.,+',.~)exp[--(r~j.i+:k)r] (8) 

where /*c,~ is the number of atomic orbitals in the 
core and valence shell, respectively, vj is the number 
of basis-set functions for orbital L Nj is the occupancy 
of the j th orbital, Nc = Y~>, Nj, Nv = Y~>~ Nj. The 
expansion coefficients C~.i, Cj.k and the exponents ~.~, 
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~i,k in the Slater-type basis functions are taken from 
the Roothaan-Hart ree-Fock wave function for the 
ground-state atom (Clementi & Roetti, 1974). For a 
basis function with principal quantum number n, 
n~ = nk = n -  1. As an example, for a ground-state C 
atom the number of orbitals in the valence shell /x~. 
equals 4, with N~ = 4, N~ -- 2 and N2 = 2; the subshells 
are expansions of six and four slater-type functions, 
respectively, i.e. u~ = 6, u2 = 4. Note that because of 
the spherical averaging of p~ and p~ the occupancies 
of orbitals with the same n and I values are the same, 
regardless of their m values. In other words, the 
electrons in a subshell are evenly distributed among 
the orbitals with different m quantum numbers. 

The scattering factor for the atomic density in (4) is 

f i (S)  = ~ pe(r)exp (27riS • R) dr 

= P~fi(S) + Pofo(SI"3 

/max I 

+47r E E ~[it(j ,(S/K"))Ptmfl, , .o(S/S)] 
I:o ,,:o p (9) 

where jr(x) is the lth-order spherical Bessel function 
(Arfken, 1970) and (jr(S)) is defined by the Fourier- 
Bessel transform 

oo 

(j,(S)) = ~ r2Rt(r)jl(27rSr) dr (10) 
0 

and 
oo 

f i (S ) : ( jo .c (S) )=47r  ~ r2p<(r)jo(2rrSr)dr (11) 
0 

oo 

f , (S )=( jo ,  o(S))=4"rr ~ rZpo(r)jo(27rSr) dr. (12) 
0 

Equations (1), (2) and (3) can be rewritten as 

¢,(Rp)= E Z , . / I R M p I - - Y . I [ P e . M ( r M ) I I r p I ] d r M  
M ~ P  M 

(13) 

E(Rp)= E ZMRMp/IRMpl 3 
M # P  

+Z~[rppe.M(rM)/Irpl3]drM (14) 
M 

VEm.(Rp) 

= -  ~ ZM(3t,~t.--6,.,,]RMp]2)/IRMpI 5 
M ~ P  

+ ~ J [P~,M (rM)(3XmX. -- 3m.irpI2)/]rp] s] arm 
M 

(15) 

where ZM and RM are the nuclear charge and the 
position vector of atom M respectively, rp and rt,4 
are the vectors from P and from the nucleus M to a 
point r respectively (Fig. 1) such that rp = r - R p  and 
r M ---- r -  RM = rp -t- Rp - RM = rp - RMp. lk is the kth 
component of RMp and Xk is the kth component of 
rp (1 <- k-< 3). 

The electrostatic properties at a nucleus can be split 
into contributions from the charge density centered 
at this nucleus and those of the densities associated 
with all other atoms. We refer to the former as central 
and the latter as peripheral (lattice) contributions 
respectively. If the point in question, P, is not at a 
nucleus, then only the peripheral contributions exist. 

Peripheral contributions 

The integrals involved are one-electron two-center 
integrals, which can be evaluated by the use of the 
Fourier convolution-theorem method (Prosser & 
Blanchard, 1962) 

~ f ( r ) g * ( r -  R) d r =  j" F(S)G*(S)  exp ( -2r r iS  • R) dS 

(16) 

where F(S) and G(S) are the Fourier transforms of 
f ( r )  and g(r), respectively, and * indicates the com- 
plex conjugate, 

F(S)=~f ( r ) exp (Z ' r r iS . r )d r  (17) 

G ( S ) = J g ( r ) e x p ( 2 r r i S . r ) d r .  (18) 

The integrals in (13) through (15) can be rewritten as 

[Pe, M(rM)/Irp[] drM 
- 1  = ~ $ [L,M(S)/ISl2] exp (2~riS. RMp) a s  (19) 

f [ r .m.M(rM)/ I r . I  3] drM 

= 2i ~ [SL, M(S)IlSl 2] exp (2~-iS • RM,>) dS (2O) 

J [P~.M(rM)(3Xm.pX,,.p - a,..Ir.12)/Ir,>l 5] arm 

= - (47r/3) J" [(3SINS,- &..ISI2)L,M (S)/ISl 2] 
× exp (2rriS • RMp) dS. (21) 

In the following, it is assumed that all the direct- 
space vectors are referred to the local Cartesian 
coordinate system of atom M. 

The expansion of exp ( iS .  R) (Cohen-Tannoudji,  
Diu & Lalo~, 1977; Arfken, 1970) 

oo 

e x p ( i S . r ) =  • i l(2l+l)jt(Sr)Pl(cos y) (22) 
1 = 0  

[where P~(x) is the lth-order Legendre polynomial 
and 3' is the angle between S and r] can then be used 
to separate the integration into a radial and an angular 

r M r 

. . . .  - - -  74" 

I 

0 

Fig. 1. Definition of the vectors used in the electrostatic functions. 
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part. The results are as follows:$ 

OP"~(R~) 

-- E ZM/IR,.,pI 
M ~ P  

I'< b b 
- E (21rr)(PM,<IN~) E Ns E E G,,C~,k 

M g P  j = l  i = l  k = l  

I g o r  ~(2n..+3)[Or ~ (2n. k+3) ' ]  k /..,~j,i ] s,' k z, Sj, k ] S, [ 
1/2 

x A.,+.~,o,o.o(~,, + ~r~,k, IRMpI) 
~ v  ~j uS 

+(2/'rr)(PM, d N~) E Ns E E C;,,C~,k 
j = l  i = l  k = !  

t £1< gji) s,, t £ K  (~j,k) " I 
r [ , .~  t~,, .x(2n..+3)/, .~ _#~,, "x(2njk+3)"ll/2 

× L (2n ja+2) ! (2n j ,  k + 2 ) !  .J 

x A,,,.,+,,,.,o.o.o[K'(~., + ~.~), IRM~I] 
11 .max II 

+8 Z E Z(-1)  ''rr("'+3)//- i s / , '  /t"4+2) !] 
I i = 0  m i = 0  P l  

× A,,,,.,,.,,.o(K"~',,, IR,,,,,,I) 

X Ptt,,,,ptdt,~tpt(ORMp, q:'aM,,.)}" (23) 

In (23) and the equations to follow, the electronic 
density parameters inside the curly brackets are for 
the atom M and the polar coordinate system has the 
z axis of the local Cartesian coordinate system as its 
polar axis and the vector R M p  is referred to this local 
Cartesian coordinate system. 

p e r  

= E" (ZMIIRMPI~)PT[ c o s ( O ~ . ) ]  
M ~ P  

t s in  ( U~O R~.) 
~<- b 5 

- E "  (2/17")(eM, c/Nc) ~ N~ ~ ~ Cj, iCj, k 
M # P  j = l  i=1  k = !  

['[O,~ ~(2nj.+3)[Or ~(2n1~+3)']1/2 
/t '-sS, is " W~SS, k / " ] 

XL (2nj,,+2)!(2nj, k+2)! _1 

x A.,+°,. o.,.,(~;., + ~,.,,, IR,,.,,,I) 

~ . . f  cos (u~,,,.,,.)'l 
x P~'[cos ,.va,,...)Jtsin (U~RM,,) / 

+(2/.a')(PM, o/N~) E Ns E E Cj.,C~,k 
. /=I  i = l  k = l  

The symbol Y/' indicates that the contributions of the individual 
atoms must be referred to the same coordinate system. 

[ ' { O .  ty, ,~(2n . + 3 ) / O  ° t?, h ( 2 n . k + 3 ) ' l l / 2  
It,-,, ~j,i, "' ~ ~j, kS " ] 

XL ~ + ~ ~ ~-2-)~., _I 

X An,+nk,O,l,l[K'(~j,i + ~ j , k ) ,  I R M P I ]  

(cos (,,~,,M.)~ 
x P~'[cos (Ore...)] (sin (U~RM,.) J 

II.max 11 

-16('rr/3)  ~/2 E E E E 2  i ( " + ' + ' )  
II =0  m l = 0  Pt I m 

r v ( n  t + 3 ) / ( I , I .  xt~  h , /~..i ,+2)!] a rK"r RMp) z"lntl,ll,l,l~, Slt , 

( m  rn I ! )  
x C' I 11 

\+p~ Pl 

x P,,,,,,p,[dt,,,,,p,(O, q~)/Yltmtp,(O, ~p)] 

X Ytm±pi( ORMp, ~OR~p) } .  ( 2 4 )  

In (24) and in the following equation, sums over I 
and m are limited to nonzero values of C', which is 
defined by (29), and Ylmp are the real spherical har- 
monic functions with normalization defined by (28). 

per V E z . . ( R p )  

= -  Z" (ZM/IRM~I 3) P~[c°s (0m~P)] 
M # P  

x {cos (.~,.~,.)'[ 
sin (uq~R,.,,) J 

~',- 5 5 
+(2/37r)(PM.</N<) Z Nj X X Cj.,Cj, k 

j = l  i = !  k = l  

[ " / O r  ~ (2nj i + 3 ) ( O  ," ~ ( 2 n l k + 3 ) - l l / 2  
[~'sj,~s ' ~-sj, k, • [ 

X L j 

x A,,j.,+,,.~.o.z.2[(~k.i + ~'j,k), IR~,I] 

/cos (u~ , . ) }  
x P~[cos (0RM~)] t sin (uq~R,~.) 

I~v Y j v i 

+(2/37r)(PM,,,/Uo) E Nj E E Cj,,Cj, k 
j = l  i=1 k = l  

P/,.~ t~, \ ( 2 n .  + 3 ) / ~  t~- x ( 2 n j k + 3 ) " ] l / 2  
I~ZK ~ji) "' ~/-K ~j,k) " J x L (inj, i+2)[(2nj, k+2)! 

x a,,,.,+,,.~.o.2,2[~'(~j,i + ~'j,k), IR~pI] 

x P~[cos (0a,.,.)] {sin (u~oa,.,.) J 

5 ( 2 -  u ) !  !]-1/2 
- (8/3) [2~.(1;~o7(?-+ u) 

llmax II 

x E Z ZY',E i ( "+ ' )  
It = 0  m r = 0  Pl 1 m 

r r (~ ,  + 3 ) / ( n h + 3 ) ! ]  A . , , , , , . ( ~ , , ~ "  h IRM~I) X I. S l  t I / . . . .  , 
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m m 1 u / 

x C' 1 I~ 2 

\+P~ P~ + 

x Ph.,,p,[dh.,,p,(O, q~)/y,,m,p,(O, q~)] 

X Y l m ± p , ( O R ~ p ,  ~pRm.) (25) 

where 

oo 

AN, t,,h,k(Z, R ) =  j" CN+2,h(Z, S)j~:(SR)S k dS 
0 

(26) 

co 

GN, t(Z, S)=  I r~ exp (-Zr)j t (Sr)  dr. (27) 
0 

The expressions for GN, t(Z, S) have been tabulated 
(see Avery & Watson, 1977; Su & Coppens, 1990), 
and the evaluation of A N ,  l , . lz .k(Z,  R) is included in 
Appendix A. 

In (24) and (25), y,~p(O, ~p) are the real surface 
spherical-harmonic functions that are normalized 
according to 

2~- 71- 

I I [ytmp(O, ~p)]2 sin (0) dO d ¢ =  1 (28) 
0 0 

and 

ml m2 ) m3 
C' 11 12 /3 

P~ P2 P3 

2"rr 7r 

= I I Yl ,  mtp,(O, ~p)y,::p:(O, ¢) 
0 0 

Xy6m~p~(O,q~)sin(O)dOdq~ (29) 

has a non-vanishing value when 112-131<-1~ < 
12+13, ll+12+13=even, p, =p2p3, m, =lm2-m3l or 
m, = m2+ m3. The numerical values of 

m l  m 2  ) m 3  

C' 11 12 /3 

P l  P2 P3 

for 0_<I~___2 are tabulated elsewhere (Coppens, 
1992). A general formula is given in Appendix B. 

The components of the electric field and the ele- 
ments of the electric-field gradient due to the 
peripheral contributions can be readily calculated 
from El,,± (u = 0, 1) and VE2u± (U = 0, 1, 2). 

E~er(R P) = IWP er (D 
x-, 1 l+ka 'Lp) 

per per 
E r ( a ~ ) =  E,,_(R~) 

per EFr(R~)  = E,o (R~) 

( 3 0 )  

per per VExx ( rp)  ½V r:P~r (Re) = L-,22 + - V E 2 o  (Rp) 

per -- 1$7 KTper [1)  KTP er VEry ( re )  ) - V  (Re) - -  2 v  L, 22+ ~,lip x-,20 

per per VEzz (Re) =2VE2o (Re) 

per V Exr (Rp) 
per VExz ( rp)  

pe~ VEvz(Rp)  

per 1 per 
= V Ey~ ( R P )  = ~V E22-(Rp) 

per per V E z x ( R p ) =  = VE21+(Re) 
per per VE:.v (Rv) V = = E2,_(Rp). 

(31) 

Central contributions 

If P = M, i.e. in the case where the point Rp hap- 
pens to be at the nucleus of atom M, the electron 
density of M makes the central contribution to each 
of these electrostatic properties. In the multipole 
expansion model, only the spherical density 
(monopoles) makes a central contribution to the elec- 
trostatic potential, only the dipoles make central con- 
tributions to the electric field, and only quadrupoles 
to the electric-field gradient. These electronic contri- 
butions are given by 

~centra'(Rg)=-(PM:/N~) E Nj E E Cj.,Cj, k 
j = l  i= l  k= l  

['3r ~,(2nj + 3 ) / O r  $(2nig+3) ']  
k£~J'i] "' k'c~J'k] " I 

(nj, i+ 1)! 
)" ~(n i +n) k+2) 

(¢'j,,+sj, k, " ' 

1/2 

PM, D vi pj 

/ ,3. ry  ~(2nj +3) /O.  tg  ~(2njk+3)-  ] 1/2 
~/.t~. ~j.i] "' k "~" ~j.k] " I 

x (nj, i+nj, k+l ) !  

-- PM.0o K"sro/( no + 2) (32) 
E c e n t r a l ( D  4 . 2 

x I , " M ) = 3 P M . I I + ( K  ~1) / ( n , + l ) ( n , + 2 )  

E c e n t r a l ( D  4 
.v ~.-M) =SPM,II-(K'~,)2/(rI1+l)(rI1+2) (33) 

E c e n t r a l ( D  4 n  ,: . v  z ,,--m) = )2 / (n ,+l ) (n ,+2)  3rM, lO~ K M 

3 (K'%'2) 3 V /:7central/D 
L, xx \Jt~.M ) = -  

5 n2(n2+ 1)(n2+2) 

x ('n'PM,22+ - 3 '/2 PM.2o) 

V ]~,centralrlD 3 (K"~ '2)  3 
X_, yy ka~,M ) = 

5 n2(n2+ 1)(n2+2) 

I/2D 
X ( 7TPM.22 + + 3 ~M,201 
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V lTcentral/.ll ) ~ 6 (K"~'2) 3 
X-, z z  urn,  M ]  = 

n 2 ( n 2 +  1 ) ( n 2 + 2 )  3 I / 2 p M ,  2 o  

~7 r7 central(1D ~ ~'7 ~'central/1D 
"a-Jxy ~ l I M J  : v u x y  ~ l I M , J  

3 (K"6) 3 

-- 5 n2(n2+ 1)(n2+2) rrPM,22_ 
V ]E7 central/1D ~'7 ]~,central( D 

~ - ' x z  ~,a~,M) = - - L ,  z x  t a i M ]  

3 (K"sr2) 3 
= 5  n2(n2+ 1)(n2+2) 7rPM'21+ 

V g;'centralt'D ~ : vEcentral ( R M )  
" - " y z  \ a ~ M  1 - - ~  z y  

3 (K"sr2) 3 
5 n2(n2+ 1)(n2+2) "trPM,21-. 

(34)t 

It should be noted that in (24), (25), (30)-(34) the 
contributions to the electrostatic properties from atom 
M are referred to the same Cartesian coordinates as 
the density functions centered on M. Therefore, the 
summations over M are understood as being made 
after transformation to a common Cartesian coordin- 
ate system. The " sign in (24) and (25) implies such 
summations; when the peripheral contributions and 
the central contributions are summed, the same con- 
sideration must be taken into account. There is no " 
sign in (23) because the scalar electrostatic potential 
remains unchanged when referred to a second Car- 
tesian coordinate system. 

Application of the formalisms 

(a) Procrystal model 

The free-atom model is a special case of the 
Hansen-Coppens density model for which the defor- 
mation density is zero, Pc = Arc = number of core elec- 
trons, Po = No = number of valence electrons and K' = 
1. Thus the relations given above can be simplified 
to give a method for evaluating the procrystal contri- 
butions, which is an alternative to the methods 
described by Schwarzenbach & Thong (1979). Test 
calculations show good agreement between the two 
methods. For example, for the procrystal contribution 
to VEzz at the Fe nucleus in the iron(II) tetraphenyl- 
porphyrin molecule, Schwarzenbach & Thong's 
method gives a value of 0.73 e/~-3, whereas our 
method leads to a value of 0.74 e/~-3. 

( b ) The electrostatic potential for deuterated benzene 

As a test of the procedure the electrostatic potential 
due to the benzene molecule was evaluated using 
123 K X-ray diffraction data of fully deuterated ben- 
zene, kindly supplied by Dr Ruble (Jeffrey, Ruble, 
Yeon & Lehmann, 1991). 

f See also Stevens, DeLueia & Coppens (1980); Pant & Stevens 
(1988); Coppens & Becker (1992). 

An aspherical-atom refinement was done using the 
program LSMOL90 (1990), which is an upgraded 
version of M O L L Y  (Hansen & Coppens, 1978). Posi- 
tional and thermal parameters of the C and D atoms 
were fixed at the 123 K neutron values (Jeffrey, Ruble, 
McMullan & Pople, 1987). The multipole populations 
were constrained to be the same on each of the atom 
types, and the 'index picking rules' (Kurki-Suonio, 
1977) were applied to the multipoles with respect to 
the properly defined local Cartesian coordinate sys- 
tems. The multipole expansion was truncated at the 
octapolar level for the C atoms and at the quadrupolar 
level for the D atoms. The K' and K" of the C atoms 
were refined, while K' and K" for the D atoms were 
fixed at a value of 1.4. This gave 28 variables in the 
least-squares refinement, minimizing the function 
Yw(Fo-k lG[ )  2 where w=l/cr2(Fo). Of the 2335 
unique reflections, 934 reflections with ! >- 3tr(l)  were 
used in the refinement to yield R(F)=0 .0381 ,  
Rw(F) = 0.0346 and a goodness of fit of 2.03. 

Fig. 2 shows the experimental electrostatic poten- 
tial due to a single C6D 6 molecule, plotted in a plane 
parallel to, but 1 A, above the C 6 D  6 molecular plane. 
Figs. 2(a), (b) and (c) represent, respectively, the 
potential due to the total charge density, the pro- 
molecule and the deformation density. The map may 
be compared with the results obtained by Stewart 
(1991) with the same data set but a different least- 
squares refinement. The two maps are qualitatively 
the same, but differ in the value of the potential 
directly above the C atoms, which is less positive 
according to the present results. 

( c) Electrostatic potential in the plane of the iron(II) 
tetraphenylporphyrin molecule 

Figs. 3(a), (b) and (c) show the electrostatic poten- 
tial due to the total charge density, the promolecule 
and the deformation density in the least-squares plane 
of the iron(II) tetraphenylporphyrin molecule. The 
multipole expansion coefficients and geometry are 
based on results obtained earlier (Li, Su, Coppens & 
Landrum, 1990). 

( d ) Electric-field gradient at the nuclear position 

Comparison of X-ray field gradients with results 
of Mrssbauer measurements for a number of iron 
compounds have been reported elsewhere (Coppens 
1991), and will be discussed more fully in a sub- 
sequent publication. 

Discussion 

The calculations indicate that the dominant com- 
ponents in the peripheral contributions are due to the 
point nuclear charges and the electronic monopoles, 
while at the nuclear positions the central contribution 
from the atom dominates. 
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Fig. 2. Electrostatic potential contour plot for C6D 6 from a single 
extracted molecule. Sections shown are at 1 A above the C6D 6 
least-squares plane, and are 7 x 7 A. Negative contours are short 
dashed lines, zero contours are long dashed lines and positive 
contours are solid lines. (a) Potential due to the total charge 
density. Minimum contour - 0 . 2 4 e , ~ - t ;  maximum contour 
0.06 e /~- t .  Contour intervals at 0.02 e A -t.  (b) Potential due to 
the promolecule. Minimum contour 0.02 e j - l ;  maximum con- 
tour 0.30 e A- t .  Contour intervals at 0.04 e ,~-t. (c) Deformation 
density potential. Minimum contour - 0 . 3 8 e ~ - t ;  maximum 
contour 0.02 e A -t.  Contour intervals at 0.02 e ,~,-~. 

( b )  
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Fig. 3. Electrostatic potential contour plot for iron(]I) tetraphenyl- 
porphyrin from a single extracted molecule. Sections are in the 
least-squares plane through the molecule and are 10x 10 A. 
Negative contours are short dashed lines, zero contours are long 
dashed lines and positive contours are solid lines. (a) Potential 
due to the total charge density. Minimum contour 0.0 e A -l .  
maximum contour 2 . 0 e A  -I. Contour interval at 0 . 4 e A - t l  
(b) Potential due to the promolecule. Minimum contour 
0 .40cA- t ;  maximum contour 2.0e A-~. Contour interval at 
0.4 e A -t. (c) Deformation density potential. Minimum contour 
-1.0 e A- t ;  maximum contour 0.0 e A- t .  Contour interval at 
0.1 e/~ -I" 
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It is worth noting that the promolecule electrostatic 
potential is positive everywhere and the deformation 
potential, which is the difference between the total 
potential and the promolecule potential, is negative 
almost everywhere in the regions plotted. It can be 
shown by using Gauss's law in electrostatics 
(Jackson, 1975) that for nuclear point charges and 
spherical free-atom-model charge distributions, the 
promolecule potential is positive everywhere. In the 
promolecule the nuclear charges are incompletely 
shielded; the closer a point is to a nucleus, the less 
shielded the nuclear charge and the larger the 
potential. 

This point can also be illustrated by considering 
the peripheral contribution to the potential due to a 
one-electron atom located at M. The charge-density 
distribution is given by 

p(r) = 6 ( r -  rM)-(1/47r)(sr3/2) exp ( -¢ ' l r -  rMI). 

(35) 

From (23) and (A5), we obtain for the peripheral 
contribution due to the H atom 

qbPer(Rp) 

= l a~ ,p l - ' -  la~,pl - '  

+ [exp (--KIRMpl)/21RM~I](KIRM~I + 2) 

= + [exp (--KlaM~I)/21aM~I](KIaMpl + 2). (36) 

In other words, the total contribution, after a partial 
cancellation of the nuclear charge and electronic 
charge contributions, can be considered as being due 
to the part of the nuclear charge that is not shielded 
by the electrons. It falls off rapidly with ~'[RM,,I and 
becomes negligible for large values of IRMpl. 

In regions where the deformation of the electronic 
density is such that on average the nuclear charges 
are better shielded, negative deformation potentials 
can be expected. That is the case for many parts of 
the regions plotted in Figs. 2(c) and 3(c). 

The contribution to the electrostatic properties due 
to the higher multipoles falls off rapidly with ~IRMp[. 
Calculations show that when IRMpl is greater than 
5/~ the electronic density can be treated as a point 
charge centered at M. Therefore the point-charge 
approximation may be used to account for charge- 
density fragments far from the point being con- 
sidered. 

The application of the formalism does not have to 
be limited to single molecules, and may be used to 
examine the electrostatic properties of selected 
groups of atoms, such as functional groups of organic 
compounds, ligands and metals in coordination com- 
pounds and dimers. Electrostatic properties from the 
X-ray charge density can be used to improve our 
understanding of chemical interactions and other 
related properties of molecules. 
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APPENDIX A 

The integrals 

AN, t,,h,k(Z,R)=~ GN+2,,,(Z, S)jt2(SR)S k dS (A1) 
o 

can be evaluated by the substitution of the expressions 
for GN+2,1,(Z, S) and jl2(x) given in the literature 
(Avery & Watson, 1977; Su & Coppens, 1990; Arfken, 
1970) and subsequent use of the following integrals 
(Gradshteyn & Ryzhik, 1965). 

i sin(ax) dx 7r [ 
X(X2 q_ ~2)(n+l)--2fl(-~n+2 ) 1 -  

exp ( -af t )  
2"n! 

V.(a3)] 

(A2) 

[ a > 0 ,  Re f l>0 ,  Fo(z ) :  1, F l ( z ) :  z + 2 , . . . ,  F . ( z )=  
(z + 2n)F._,(z)- zF'_,(z)]. 

; x (z''+~) sin (ax) dx 
(x2 + z)~.+l~ 

o 
(-1)(m+") 7r d" 

- n! 2 dz" [z" exp (-azl/2)] (A3) 

[ a > 0 ,  O<_m<_n, largzl<Tr ]. 

i X 2m) COS (ax) dx 
(x2+ z)~"+~ 

o 

(--1)Cr"+"~ 7r d" 
- n! 2 dz" [z'-l /2 exp (-azl/2)] (A4) 

[ a > 0 ,  0 < - m < n + l ,  [arg z[ < 7r]. 

For example, 

ao,o,o.o(Z, R) = r r [2-  exp ( - R Z ) ( R Z  + 2)]/2RZ 3 

(a5) 

Ao.o,,,l(Z, R ) =  7r{2- exp ( - R Z )  

x[(RZ)2+2RZ+Z]}/ZR2Z 3 (A6) 

Ao.o,2,z(Z, R ) =  7r{6-exp ( - R Z ) [ ( R Z )  3 

+3(RZ)2+6R.Z+6]}/ZR3Z 3. (A7) 

Alternatively, the integrals in (A1) can be reduced 
to integrals of the following form (Gradshteyn & 
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Ryzhik, 1965) 

f x°-'Jv(ax) 
(xZ + k2).+1 dx 

0 

a"k°+~'-2"-2F(½p +½v)F(la, + 1-½p -½v) 
2~+'r(~+l)F(v+l) 

x ,F2(½p+lv; ½P+½V-lX, v+ I; aZk2/4) 
a2p .+2-p / - , (  1 ,.~ ..1_ I ,  - t ~ v  -5 ,"  - Ix - 1) -+ 

2 2 .  + 3 - p / ' [ ] 2 ,  -1-" 2 + 1(/} _ P ) ] 

x ,F2(lz + 1;/z + 2 + ½ ( v - p ) ,  ~ + 2  

- ½ ( v + O ) ;  a2k2/4) (A8) 

[a > 0, - R e  v <  Re p < 2 R e  tx +7], where the hyper- 
geometric function iF2(a; b, c; x) is defined as 

oo 

iF2(a; b, c; x ) =  }-'. [(a)./(b).(e).n!]x" ( a 9 )  
n=0 

and ( a ) .  = a (a+l ) . . .  ( a + n - 1 ) ,  (a)o= 1. 

APPENDIX B 

Integral of  the product  of three real spherical- 
harmonic  functions 

m3 2~- rr 

C' l, 12 13 = I I yt,..,p,(O, ~p)yt2..2p~(O. ~p) 
0 0 

\ Pl P2 P3 
Xyt3,,3p3(O, ~O) sin (0) dO d~o 

(B1) 

The above integral will be 0 unless [/2-13[-11-< 
/2+/3,11+12+13 =even, P~=P2Pa, ml=[m2-m3[ or 
m~ = m2 + m3. If these condit ions are fulfilled, we can 
rewrite C '  in the form 

m m' m+m'  
C'  t l' 1" J (B2) 

p p' pp' / 

and (B2) can be expressed in terms of  the integral 
of  the product  of  three complex spherical-harmonic 
functions 

I' 1" J" 
We have 

! m' m+ 
C' 1' 1" I 

p' pp' / 

= ( - 1 )  (%.-8.'.-)[2w2/2(1 - 6,.,,.2.,,o ) 

+ m a x  (6,,,.offing.o, 6m~.o)]C l 
m' m +  m'~ 

! 
I' 1" ] 

(B3) 

where the integral of the product  of  three complex 
spherical-harmonic functions is (Edmonds ,  1960) 

(: m m+m  
C l' l" / 

= (-I)( '+"')[(2/+ I)(2/'+ I)/47r] I/2 (~ 

x (1 ml'm'll"m + m') 

where (Iml'm']l"m") is the 
coefficient (Edmonds ,  1960) and 

, ,2 (o o 

0 = l~ + 12 + 13 = odd if J 

_ ~ [ ( a -  2/,) !(J - 21z) !(J - 210 ! / ( J  + 1)] u2 

- |  x[(J/2)!/(J/2-1,)!(J/2-12)!(J/2-13)!] 

I~ i f J  = 11 + 12+ 13 = even. (B5) 

For example,  (!l 
C'  1 

= 0.218509686118416 . . . .  

Note that by definition Ylo = Ym+. 

i t 

o 

(B4) 

C lebsch -Gordon  
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Abstract 

A general joint probability distribution between struc- 
ture factors is derived and is expressed as an exponen- 
tial of the free energy for a system of interacting 
atoms. The free energy is an explicit function of the 
atomic densities and the interatomic potentials. In 
the limit of infinite temperature, energy effects are 
unimportant and the probability distribution becomes 
identical to those derived by Hauptman & Karle [ The 
Solution of the Phase Problem. I. The Centrosymmetric 
Crystal. (1953). ACA Monogr. Wilmington: The 
Letter Shop; Acta Cryst. (1959), 12, 93-97] and 
Bricogne [Acta Cryst. (1984), A40, 410-445]. 

I. Introduction 

The principle of maximum entropy (PME) has been 
applied to crystallographic problems from a statistical 
inference viewpoint by Bricogne (1984) and Gull, 
Livesey & Sivia (1987). Navaza (1985, 1986) has 
shown that the type of constraint used with the PME 
determines the final form of the maximum-entropy 
functional. Recently, Bryan (1988) has also incor- 
porated correlations into the entropy expression. 
However, no one has attempted to incorporate 
stereochemistry in a general way, although Wilson 
(1981) has considered the possibility. This paper 
shows that if chemical information can be represented 
as potential functions, then it can be applied with the 

0108-7673 / 92/020197-13 $03.00 

PME to yield the Helmholtz free energy as a function 
of the structure factors. Moreover, the free energy lS 
shown to be, within a normalization factor, the log 
of a structure-factor joint probability distribution 
(j.p.d.). Phase determination can therefore be con- 
sidered as a constrained free-energy minimization. 

In calculating structure-factor j.p.d.s the crystal is 
usually modelled as a sample from an ensemble of 
structures in which all possible atomic configurations 
are equally represented. This assumption is free from 
stereochemical bias and is routinely used to solve 
small-molecule crystal structures. For larger struc- 
tures, however, current procedures do not work well. 
From a theoretical point of view, one possible alterna- 
tive for improving the success rate is to eliminate 
from the ensemble those configurations that are 
stereochemically impossible. 

Energetic constraints yield preferred bond lengths 
and angles which alter the number of 'reasonably 
probable' configurations. Since the information 
theoretic entropy is a measure of reasonably probable 
configurations* and is equivalent to the entropy 
defined in statistical mechanics [up to a multiplicative 
Boltzmann constant kB (Jaynes 1957)], it is clear that 
a physical approach offers an opportunity for ex- 
tending the principle of maximum entropy within 
crystallography. 

* And this measure is dependent only on a reasonable definition 
for 'reasonably probable' (Jaynes, 1965). 

© 1992 International Union of Crystallography 


